

Grade 12: Practical 1.2 Genetics - 7 May 2025 - Scope

TOPICS	Mark allocation
Genetics	30
Scientifical investigation	General skills: Make sure you can draw all type of graphs, pie, bar, histogram and line graph Determine independent and dependent variables How to improve reliability and validity Planning steps Draw conclusion Calculation in decrease and increase in percentage – Revise this with learners #Please share the video on scientifical investigations with your learners
Terminology	Gene and Allele, Dominant and recessive alleles, Phenotype and Genotype,
Type of Dominance	Complete dominance — one allele is dominant and the other is recessive, such that the effect of the recessive allele is masked by the dominant allele in the heterozygous condition Incomplete dominance — neither one of the two alleles of a gene is dominant over the other, resulting in an intermediate phenotype in the heterozygous condition Co-dominance — both alleles of a gene are equally dominant whereby both alleles express themselves in the phenotype in the heterozygous condition
Monohybrid crossings	Format for representing a genetic cross
Dihybrid crosses	Mendel's Principle of Independent Assortment – The various 'factors' controlling the different characteristics are separate entities, not influencing each other in any way, and sorting themselves out independently during gamete formation
Blood grouping	Be able to answer questions on Dihybrid crossings Different blood groups are a result of multiple alleles The alleles I ^A , I ^B and i in different combinations result in four blood groups Determine genotype and phenotypes of parents and off springs

Mlfeerden.

Cicilia can Heerden (Acting PSC: Life Sciences)

Date: 25/05/2025

LIFE SCIENCES GRADE 12

PRACTICAL TASK 1.2: Genetics and inheritance

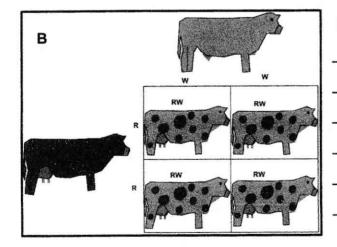
DATE: 09 MAY 2019

NAME:		
	the second secon	

education
Department of Education FREE STATE PROVINCE

Total	
	30

TIME: 30 MIN


QUESTION 1

The diagrams below illustrates the three types of dominance in genetics.

1.1 Identify the three types of dominance and explain what each entails.

Α	Red		White
parents		x	
X.		-4	<i>*</i>
F1			
-*	-4	-+	
	All	l Pink	

A _______

В _____

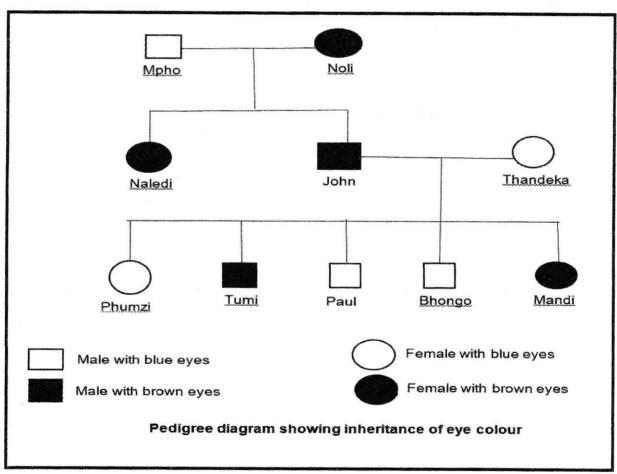
С	У	Ź у
Y	Yy 🥒	Yy 🌶
У	уу 🧷	уу 🧷

		*

 (3×2) (6)

education Peparlment of Education REE STATE PROVINCE

LIFE SCIENCES GRADE 12

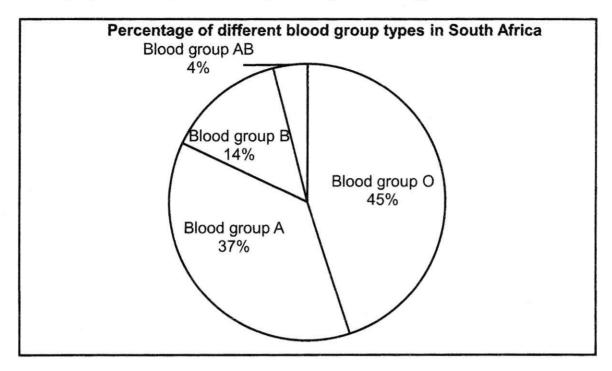

PRACTICAL TASK 1.2

GENETIC LINEAGES/PEDIGREES & MUTATONS

DATE: 1 June 2021		
TIME: 30 minutes		
	MARKS	
NAME:		30

QUESTION 1

The pedigree diagram below shows the inheritance of eye colour over several generations in a family. Brown eye colour (B) is dominant over blue eye colour (b).



QUESTION 2

2.1	An investigation was conducted to determine the possibility of eye and hair color in the Farrell family. The parents are heterozygous for both traits.	
	Use the following key for the alleles:	
	B = brown hair b = blond hair G = brown eyes g = green eyes	
2.1.1	Write down the genotype of the parents.	
		(2)
2.1.2	If a male gamete, containing the alleles b and G, fuses with a female gamete with the same alleles, give the following for the child:	
	(a) Genotype	
	(b) Phenotype for hair	
	(c) Phenotype for eyes	(3)
2.1.3	Give the phenotypic ratio of the possible F ₁ offspring of these parents.	
		(2)
2.1.4	How many of the possible 16 offspring in the above crossing will have the same genotype as the parents?	
		(1) (8)

QUESTION 3

3.1 The graph below represents the percentage of blood types found in South Africa.

3.1.1	Give the genotype of blood group O	(1)
-------	------------------------------------	----	---

3.1.2	On May 1 st 2019 it was recorded that South Africa has a population of 55 437 815 people. Use the information in the graph to calculate the number of people with blood group A. Show all working.

(3)